1,743 research outputs found

    Effects of Dynamic Goals on Agent Performance

    Get PDF
    Autonomous systems are increasingly being used for complex tasks in dynamic environments. Robust automation needs to be able to establish its current goal and determine when the goal has changed. In human-machine teams autonomous goal detection is an important component of maintaining shared situational awareness between both parties. This research investigates how different categories of goals affect autonomous change detection in a dynamic environment. In order to accomplish this goal, a set of autonomous agents were developed to perform within an environment with multiple possible goals. The agents perform the environmental task while monitoring for goal changes. The experiment tests the agents over a range of goal changes to determine how detection performance is affected by the different categories of goals. Results show that detection is highly dependent on what goal is being switch to and from. The point similarity between goals is the most significant factor in evaluating the change detection time. An additional experiment improved upon the goal agent and demonstrated the importance of having the proper perception mechanics for feedback within the environment

    Valence Quark Spin Distribution Functions

    Full text link
    The hyperfine interactions of the constituent quark model provide a natural explanation for many nucleon properties, including the Delta-N splitting, the charge radius of the neutron, and the observation that the proton's quark distribution function ratio d(x)/u(x)->0 as x->1. The hyperfine-perturbed quark model also makes predictions for the nucleon spin-dependent distribution functions. Precision measurements of the resulting asymmetries A_1^p(x) and A_1^n(x) in the valence region can test this model and thereby the hypothesis that the valence quark spin distributions are "normal".Comment: 16 pages, 2 Postscript figure

    NeuroSAFE frozen section during robot-assisted radical prostatectomy (RARP): Peri-operative and Histopathological Outcomes from the NeuroSAFE PROOF Feasibility Randomised Controlled Trial

    Get PDF
    Objectives: To report on the methods, peri‐operative outcomes and histopathological concordance between frozen and final section from the NeuroSAFE PROOF Feasibility study (NCT03317990). Patients and Methods: Between May 2018 and March 2019 49 men at 2 UK centres underwent robot‐assisted robotic prostatectomy (RARP). 25 men were randomised to NeuroSAFE RARP (intervention arm) vs. 24 men to standard RARP (control arm). Frozen section was compared to final paraffin section margin assessment in the 25 men in the NeuroSAFE arm. Operation timings and complications were collected prospectively in both arms. Results: 50 NVB from 25 patients in the NeuroSAFE arm were analysed. When analysed by each pathological section (n=250, average 5 per side) we note sensitivity 100%, specificity 99.2%, AUC was 0.994 (95% CI 0.985 to 1, P= <.001). On an NVB basis (n=50) we note sensitivity of 100%, specificity 92.7%, and AUC of 0.963 (95% CI 0.914 to 1, p = <0.001. NeuroSAFE RARP lasted a mean 3 hours 16 minutes (knife to skin to off table, 95% CI 3 hrs 2 mins ‐ 3 hrs 30 mins) compared to 2 hours 14 minutes (2 hrs 2 mins ‐ 2 hours 25 mins, P=<0.001) for standard RARP. There was no morbidity associated with the additional length of operation in the NeuroSAFE arm. Conclusion: This feasibility study demonstrates the safety, the reproducibility and the excellent histopathological concordance of the NeuroSAFE technique in the NeuroSAFE PROOF trial. Though the technique increases the duration of RARP, this does not cause short‐term harm. Confirmation of feasibility has led to the opening of the fully powered NeuroSAFE PROOF RCT, which is currently underway at 4 sites in the UK

    Parton distributions from high-precision collider data: NNPDF Collaboration

    Get PDF
    We present a new set of parton distributions, NNPDF3.1, which updates NNPDF3.0, the first global set of PDFs determined using a methodology validated by a closure test. The update is motivated by recent progress in methodology and available data, and involves both. On the methodological side, we now parametrize and determine the charm PDF alongside the light-quark and gluon ones, thereby increasing from seven to eight the number of independent PDFs. On the data side, we now include the D0 electron and muon W asymmetries from the final Tevatron dataset, the complete LHCb measurements of W and Z production in the forward region at 7 and 8 TeV, and new ATLAS and CMS measurements of inclusive jet and electroweak boson production. We also include for the first time top-quark pair differential distributions and the transverse momentum of the Z bosons from ATLAS and CMS. We investigate the impact of parametrizing charm and provide evidence that the accuracy and stability of the PDFs are thereby improved. We study the impact of the new data by producing a variety of determinations based on reduced datasets. We find that both improvements have a significant impact on the PDFs, with some substantial reductions in uncertainties, but with the new PDFs generally in agreement with the previous set at the one-sigma level. The most significant changes are seen in the light-quark flavor separation, and in increased precision in the determination of the gluon. We explore the implications of NNPDF3.1 for LHC phenomenology at Run II, compare with recent LHC measurements at 13 TeV, provide updated predictions for Higgs production cross-sections and discuss the strangeness and charm content of the proton in light of our improved dataset and methodology. The NNPDF3.1 PDFs are delivered for the first time both as Hessian sets, and as optimized Monte Carlo sets with a compressed number of replicas.V. B., N. H., J. R., L. R. and E. S. are supported by an European Research Council Starting Grant “PDF4BSM”. R. D. B. and L. D. D. are supported by the UK STFC grants ST/L000458/1 and ST/P000630/1. L. D. D. is supported by the Royal Society, Wolfson Research Merit Award, grant WM140078. S. F. is supported by the European Research Council under the Grant Agreement 740006NNNPDFERC-2016-ADG/ERC-2016-ADG. E. R. N. is supported by the UK STFC grant ST/M003787/1. S. C. is supported by the HICCUP ERC Consolidator grant (614577). M. U. is supported by a Royal Society Dorothy Hodgkin Research Fellowship and partially supported by the STFC grant ST/L000385/1. S. F and Z. K. are supported by the Executive Research Agency (REA) of the European Commission under the Grant Agreement PITN-GA-2012-316704 (HiggsTools). A. G. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 659128-NEXTGENPDF

    Parton distribution benchmarking with LHC data

    Get PDF
    We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. We quantify the agreement between data and theory by computing the χ 2 for each data set with all the various PDFs. PDF comparisons are performed consistently for common values of the strong coupling. We also present a benchmark comparison of jet production at the LHC, comparing the results from various available codes and scale settings. Finally, we discuss the implications of the updated NNLO PDF sets for the combined PDF+α s uncertainty in the gluon fusion Higgs production cross section

    Measurement of the Spin Asymmetry in the Photoproduction of Pairs of High-pT Hadrons at HERMES

    Get PDF
    We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.Comment: 5 pages (latex), 4 figures (eps

    Parton distributions for the LHC run II

    Get PDF
    We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.Comment: 151 pages, 69 figures. More typos corrected: published versio

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Comparative genomics of Cluster O mycobacteriophages

    Get PDF
    Mycobacteriophages - viruses of mycobacterial hosts - are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages - Corndog, Catdawg, Dylan, Firecracker, and YungJamal - designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange
    corecore